1元虚拟主机

当前位置:  首页 >  产品资讯 >  关于kmp算法的一些介绍

关于kmp算法的一些介绍

来源:景安网络

作者:网络

更新时间:2016-02-19 15:34

景安网络—专业的多线服务器托管商!提供快云服务器,快云VPS,虚拟主机,域名注册,网站空间,服务器托管,服务器租用,SSL证书。1元试用30天vps活动,活动进行中!查看详情

    鉴于最近很多朋友对kmp算法有一些疑问,拿KMP算法来给大家牵扯几句,说的不好的地方,可能是自己的水平还不到,望大家体谅。

    Kmp算法是由Knuth,Morris,Pratt共同提出的模式匹配算法,其对于任何模式和目标序列,都可以在线性时间内完成匹配查找,而不会发生退化,是一个非常的模式匹配算法。但是相较于其他模式匹配算法,该算法晦涩难懂,次接触该算法的读者往往会看得一头雾水,主要原因是KMP算法在构造跳转表next过程中进行了多个层面的优化和抽象,使得KMP算法进行模式匹配的原理显得不那么直白。

    KMP算法对于朴素匹配算法的改进是引入了一个跳转表next[]。以模式字符串abcabcacab为例,其跳转表为:

    kmp算法

    跳转表的用途是,当目标串target中的某个子部target[m...m+(i-1)]与pattern串的前i个字符pattern[1...i]相匹配时,如果target[m+i]与pattern[i+1]匹配失败,程序不会像朴素匹配算法那样,将pattern[1]与target[m+1]对其,然后由target[m+1]向后逐一进行匹配,而是会将模式串向后移动i+1 - next[i+1]个字符,使得pattern[next[i+1]]与target[m+i]对齐,然后再由target[m+i]向后与依次执行匹配。

    举例进行讲解,如下是使用上例的模式串对目标串执行匹配的步骤

    kmp算法

    通过模式串的5次移动,完成了对目标串的模式匹配。这里以匹配的第3步为例,此时pattern串的第1个字母与target[6]对齐,从6向后依次匹配目标串,到target[13]时发现target[13]='a',而pattern[8]='c',匹配失败,此时next[8]=5,所以将模式串向后移动8-next[8] = 3个字符,将pattern[5]与target[13]对齐,然后由target[13]依次向后执行匹配操作。在整个匹配过程中,无论模式串如何向后滑动,目标串的输入字符都在不会回溯,直到找到模式串,或者遍历整个目标串都没有发现匹配模式为止。

    next跳转表,在进行模式匹配,实现模式串向后移动的过程中,发挥了重要作用。这个表看似神奇,实际从原理上讲并不复杂,对于模式串而言,其前缀字符串,有可能也是模式串中的非前缀子串,这个问题我称之为前缀包含问题。以模式串abcabcacab为例,其前缀4 abca,正好也是模式串的一个子串abc(abca)cab,所以当目标串与模式串执行匹配的过程中,如果直到第8个字符才匹配失败,同时也意味着目标串当前字符之前的4个字符,与模式串的前4个字符是相同的,所以当模式串向后移动的时候,可以直接将模式串的第5个字符与当前字符对齐,执行比较,这样实现了模式串一次性向前跳跃多个字符。所以next表的关键是解决模式串的前缀包含。当然为了保证程序的正确性,对于next表的值,还有一些限制条件,后面会逐一说明。
 
    如何以较小的代价计算KMP算法中所用到的跳转表next,是算法的核心问题。这里我们引入一个概念f(j),其含义是,对于模式串的第j个字符pattern[j],f(j)是所有满足使pattern[1...k-1] = pattern[j-(k-1)...j - 1](k < j)成立的k的值。还是以模式串abcabcacab为例,当处理到pattern[8] = 'c'时,我们想找到'c'前面的k-1个字符,使得pattern[1...k-1] = pattern[8-(k-1)...7],这里我们可以使用一个笨法,让k-1从1到6递增,然后依次比较,直到找到值的k为止,比较过程如下

    kmp算法

    因为要取的k,所以k-1=1不是我们要找的结果,求出k的值为4+1=5。但是这样的方法比较低效,而且没有充分利用到之前的计算结果。在我们处理pattern[8] = 'c'之前,pattern[7] = 'a'的前缀包含问题已经解决,f(7) = 4,也是说,pattern[4...6] = pattern[1...3],此时我们可以比较pattern[7]与pattern[4],如果pattern[4]=pattern[7],对于pattern[8]而言,说明pattern[1...4]=pattern[4...7],此时,f(8) = f(7) + 1 = 5。再以pattern[9]为例,f(8) = 5,pattern[1...4]=pattern[4...7],但是pattern[8] != pattern[5],所以pattern[1...5]!=pattern[4...8],此时无法利用f(8)的值直接计算出f(9)。

    kmp算法

    我们可能考虑还是使用之前的笨方法来求出f(9),但是且慢,利用之前的结果,我们还可以得到更多的信息。还是以pattern[8]为例。f(8) = 5,pattern[1...4]=pattern[4...7],此时我们需要关注pattern[8],如果pattern[8] != pattern[5],那么在匹配算法如果匹配到pattern[8]才失败,此时可以将输入字符target[n]与pattern[f(8)] = pattern[5]对齐,再向后依次执行匹配,所以此时的next[8] = f(8)(此平移的正确性,后面会作出说明)。而如果pattern[8] = pattern[5],那么pattern[1...5]=pattern[4...8],如果target[n]与pattern[8]匹配失败,那么同时也意味着target[n-5...n]!=pattern[4...8],那么将target[n]与pattern[5]对齐,target[n-5...n]也必然不等于pattern[1...5],此时我们需要关注f(5) = 2,这意味着pattern[1] = pattern[4],因为pattern[1...4]=pattern[4...7],所以pattern[4]=pattern[7]=pattern[1],此时我们再来比较pattern[8]与pattern[2],如果pattern[8] != pattern[2],可以将target[n]与pattern[2],然后比较二者是否相等,此时next[8] = next[5] = f(2)。如果pattern[8] = pattern[2],那么还需要考察pattern[f(2)],直到回溯到模式串头部为止。下面给出根据f(j)值求next[j]的递推公式:

    如果 pattern[j] != pattern[f(j)],next[j] = f(j);
 
    如果 pattern[j] = pattern[f(j)],next[j] = next[f(j)];
 
    当要求f(9)时,f(8)和next[8]已经可以得到,此时我们可以考察pattern[next[8]],根据前面对于next值的计算方式,我们知道pattern[8] != pattern[next[8]]。我们的目的是要找到pattern[9]的包含前缀,而pattern[8] != pattern[5],pattern[1...5]!=pattern[4...8]。我们继续考察pattern[next[5]]。如果pattern[8] = pattern[next[5]],假设next[5] = 3,说明pattern[1...2] = pattern[6...7],且pattern[3] = pattern[8],此时对于pattern[9]而言,有pattern[1...3]=pattern[6...8],我们找到了f(9) = 4。这里我们考察的是pattern[next[j]],而不是pattern[f(j)],这是因为对于next[]而言,pattern[j] != pattern[next[j]],而对于f()而言,pattern[j]与pattern[f(j)]不一定不相等,而我们的目的是要在pattern[j] != pattern[f(j)]的情况下,解决f(j+1)的问题,所以使用next[j]向前回溯,是正确的。
 
    现在,我们来总结一下next[j]和f(j)的关系,next[j]是所有满足pattern[1...k - 1] = pattern[(j - (k - 1))...j -1](k < j),且pattern[k] != pattern[j]的k中,k的值。而f(j)是满足pattern[1...k - 1] = pattern[(j - (k - 1))...j -1](k < j)的k中,k的值。还是以上例的模式来说,对于第7个元素,其f(j) = 4, 说明pattern[7]的前3个字符与模式的前缀3相同,但是由于pattern[7] = pattern[4], 所以next[7] != 4。
 
    通过以上这些,读者可能会有疑问,为什么不用f(j)直接作为KMP算法的跳转表呢?实际从程序正确性的角度讲是可以的,但是使用next[j]作为跳转表更加高效。还是以上面的模式为例,当target[n]与pattern[7]发生匹配失败时,根据f(j),target[n]要继续与pattern[4]进行比较。但是在计算f(8)的时候,我们会得出pattern[7] = pattern[4],所以target[n]与pattern[4]的比较也必然失败,所以target[n]与pattern[4]的比较是多余的,我们需要target[n]与更小的pattern进行比较。当然使用f(j)作为跳转表也能获得不错的性能,但是KMP三人将问题做到了。
 
    我们可以利用f(j)作为媒介,来递推模式的跳转表next。算法如下:

    inline void BuildNext(const char* pattern, size_t length, unsigned int* next) 
    { 
    unsigned int i, t; 
 
    i = 1; 
    t = 0; 
    next[1] = 0; 
 
    while(i < length + 1) 
    { 
        while(t > 0 && pattern[i - 1] != pattern[t - 1]) 
        { 
            t = next[t]; 
        } 
 
        ++t; 
        ++i; 
 
        if(pattern[i - 1] == pattern[t - 1]) 
        { 
            next[i] = next[t]; 
        } 
        else 
        { 
            next[i] = t; 
        } 
    } 
 
    //pattern末尾的结束符控制,用于寻找目标字符串中的所有匹配结果用 
    while(t > 0 && pattern[i - 1] != pattern[t - 1]) 
    { 
        t = next[t]; 
    } 
 
    ++t; 
    ++i; 
 
    next[i] = t; 

 
    程序中,9到27行的循环需要特别说明一下,我们发现在循环开始之后,没有再为t赋新值,也是说,对于计算next[j]时的t值,在计算next[j+1]时,还会用得着。实际这时的t的等于f(j)。还是以上例的目标串为例,当j等于1,我们可以得出t = f(2) = 1。使用归纳法,当计算完next[j]后,我们假设此时t=f(j),此时第11~14行的循环是要找到满足pattern[k] = pattern[j]的k值。如果这样的k存在,对于pattern[j+1]而言,其前k个元素,与模式的前缀k相同。此时的t+1是f(j+1)。这时我们要判断pattern[j+1]和pattern[t](t = t+1)的关系,然后求出next[j+1]。这里需要初始条件next[1] = 0。
 
    利用跳转表实现字符串匹配的算法如下:
 
    unsigned int KMP(const char* text, size_t text_length, const char* pattern, size_t pattern_length, unsigned int* matches) 
    { 
    unsigned int i, j, n; 
    unsigned int next[pattern_length + 2]; 
 
    BuildNext(pattern, pattern_length, next); 
 
    i = 0; 
    j = 1; 
    n = 0; 
 
    while(pattern_length + 1 - j <= text_length - i) 
    { 
        if(text[i] == pattern[j - 1]) 
        { 
            ++i; 
            ++j; 
 
            //发现匹配结果,将匹配子串的位置,加入结果 
            if(j == pattern_length + 1) 
            { 
                matches[n++] = i - pattern_length; 
                j = next[j]; 
            } 
        } 
        else 
        { 
            j = next[j]; 
 
            if(j == 0) 
            { 
                ++i; 
                ++j; 
            } 
        } 
    } 
 
    //返回发现的匹配数 
    return n; 
  } 
 
    该算法在原有基础上进行了扩展,在原模式串末尾加入了一个“空字符”,“空字符”不等于任何的可输入字符,当目标串匹配至“空字符”时,说明已经在目标字符串中发现了模式,将模式串在目标串中的位置,加入matchs[]数组中,同时判定为匹配失败,并根据“空字符”的next值,跳转到适当位置,这样算法可以识别出字符串中所有的匹配子串。
 
    ,对KMP算法的正确性做一简要说明,还是以上文的模式串pattern和目标串target为例,假设已经匹配到第3部的位置,且在target[13]处发现匹配失败,我们如何决定模式串的滑动步数,来保证既要忽略不必要的多余比较,又不漏过可能的匹配呢?
 
    kmp算法

    对于例子中的情况,显然向后移动多于3个字符有可能会漏过target[9...18]这样的的可能匹配。但是为什么向后移动1个或者2个字符是不必要的多余比较呢?当target[13]与pattern[8]匹配失败时,同时也意味着,target[6...12] = pattern[1...7],而next[8]=5,意味着,pattern[1...4] = pattern[4...7],pattern[1...5] != pattern[3...7],pattern[1...6] != pattern[2...7]。如果我们将模式串后移1个字符,使pattern[7]与target[13]对齐,此时target[7...12]相当于pattern[2...7],且target[7...12]与pattern[1..6]逐个对应,而我们已经知道pattern[1...6] != pattern[2...7]。所以不管target[13]是否等于pattern[7],此次比较都必然失败。同理向前移动2个字符也是多余的比较。由此我们知道当在pattern[j]处发生匹配失败时,将当前输入字符与pattern[j]和pattern[next[j]]之间的任何一个字符对齐执行的匹配尝试都是必然失败的。这说明,在模式串从目标串头移动到目标串末尾的过程中,除了跳过了必然失败的情况之外,没有漏掉任何一个可能匹配,所以KMP算法的正确性是有保证的。

    后记:

    KMP算法是一个高度优化的精妙算法,所以初涉该算法的时候,不要指望一蹴而,一下子将KMP算法理解透,而是应该循序渐进,逐步加深理解。据说该算法是Knuth,Morris,Pratt三人分别独立发现的,我斗胆揣测一下该算法的演进历程。首先应该是发现了模式串前缀的自包含问题,然后是提出了f(j)的概念,然后是搞定了如何计算f(j),然后提出了next[j]的概念,然后搞定了如何用f(j)计算next[j+1],然后是只用f(j)做中间结果直接算出next[j+1]。之所以我会这么猜测,主要是因为next跳转表的概念和生成算法太高端,中间经历了多个转换,极难一步到位想出来这么搞。所以我们也应该按照这个流程来学习KMP算法,而如何计算f(j)则是整个算法的精髓所在。

    实际上,KMP算法中所用到的跳转表next是一个简化了的DFA,对于DFA而言,其跳转和输入的字符集有关,而KMP算法中的跳转表,对于模式串中的当前位置j-1,只有两种跳转方式pattern[j],和^pattern[j],所以KMP算法的跳转功能要弱于DFA,但是其构建速度,又大大快于DFA,在花费较小代价的同时,取得了逼近DFA的效果。下面是对于文中使用的模式串生成跳转表(上)和DFA的比较,显然DFA要复杂的多。
    kmp算法
 

本文链接:http://ssl.zzidc.com/chanpinzixun/2016/0219/347.html

关键字:kmp算法

若无特别注明,文章皆为景安网络原创,转载请注明出处。

域名1元
 
返回顶部

联系我们

SSL产品
24小时客服热线:

4006-598-598

0371-9618961